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An approximate numerical method for calculating flow profiles in arteries is 
developed. The theory takes into account the nonlinear terms of the Navier- 
Stokes equations as well as the nonlinear behaviour and large deformations of 
the arterial wall. Through the locally measured values of the pressure, pressure 
gradient and pressure-radius function the velocity distribution and wall shear 
at a given location along the artery can be determined. The computed results 
agree well with the corresponding experimental data. 

1. Introduction 
The study of blood flow in arteries has occupied the attention of the researchers 

for over 150 years. Like most of the problems of life sciences, it is a complex one 
and has defied all attempts at a completely satisfactory solution. Mathematical 
treatment of the problem has been subjected to constant changes and modifica- 
tions to account for new evidence uncovered through improved experimental 
measurements. One can trace the history and development of the problem from 
numerous review articles. The most consistent treatment of the problem was 
given by Womersley (1957). Later, his analysis was extended by others to 
include the effect of initial stresses, perivascular tethering and orthotropic and 
viscoelastic behaviour of the arterial wall. A detailed comparison of this group 
of articles is given by Cox (1969). 

Womersley 's theory and its extensions are based on the linearized Navier- 
Stokes equations and small elastic deformations. Although they are shown to 
be satisfactory in describing certain aspects of the flow in small arteries, they 
fa.il to give an adequate representation of the flow field, especially in large 
arteries, see Fry, Griggs & Greenfield (1964) and Ling, Atabek & Carmody (1969). 
Because of the large dynamic storage effect of these arteries, the nonlinear con- 
vective acceleration terms of the Navier-Stokes equations are no longer negligible. 
Moreover, the walk of arteries undergo large deformations. As a result of this, 
both the geometric and elastic nonlinear effects come into play, see Ling (1970). 

To take these factors into account an approximate numerical method is de- 
veloped. The method, assuming axially symmetric flow, predicts the velocity 
distribution and wall shear at a given location in terms of locally measured 
values of the pressure, pressure gradient and pressure-radius relation. The results 
of computations show good agreement with the corresponding experimental 
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data. The simplicity of the method may make it useful in circulatory research, 
where detailed flow characteristics are required under a wide range of arteria.1 
pressures and heart rates. 

2. Statement of the problem 
Pulse propagation phenomena in arteries are caused by the interaction of 

blood with the elastic arterial wall. Therefore, the mathematical statement of 
the problem should include equations which govern the motion of blood and the 
motion of the arterial wall, and also the relations (boundary conditions) which 
connect these two motions with each other. This set of equations and conditions 
make a formidable boundary-value problem. However, the problem can be 
greatly simplified through the following three experimental observations. 

(i) The radial motion of the arterial wall is primarily dictated by the pressure 
wave. 

(ii) The perivascular tethering has a strong dampening effect on the longitudinal 
motion of the arterial wall, hence this motion may be neglected) see Patel, 
Greenfield & Fry (1964). 

(iii) To a large extent velocity profiles are developed locally as the pressure 
wave propagates along the artery, hence they do not carry a significant amount 
of momentum history from far upstream. This somewhat unusual behaviour of 
the flow can be explained in terms of the combined effects of fast propagation 
of the pressure wave and large dietensibility and taper of the arterial wall. For 
example) during systole, the heart of a medium-sized dog ejects approximately 
25 ml of blood into the ascending aorta. Assuming that the cross-sectional area 
of the root of the aorta during systole to be 4.5 em2, the corresponding displace- 
ment of the blood along the aorta will be only 5-5 cm. During this time a fast- 
rising pressure-gradient wave front, approximately 12 cm in width, accelerates 
blood locally as it sweeps along the aorta with a speed of N 400 cmls. As a result, 
in most parts of the aorta, the momentum boundary layer is developed locally 
with a minor contribution from the preceding cardiac cycles. This momentum 
layer is significantly reduced by the local convective accelerations which are 
generated through both the natural taper of the vessel and taper due to the wave 
front. I n  addition, the radial velocity of the flow near the expanding wall will 
generate a similar effect. These two latter effects will be discussed in detail in 
$4.3. After closure of the aortic valve, blood in the root of aorta is essentially 
at  rest. At distal locations, the overall passive contraction of the arterial wall 
will create a basic flow which will be increasing with distance owing to the in- 
tegration of wall flux. The magnitude of this diastolic flow is small and, as before, 
the momentum boundary layer is developed locally and is reduced by the local 
convective acceleration due to arterial taper. Thus, within a cardiac cycle, the 
mean momentum defect produced by the mean wall shear is effectively absorbed 
by the mean positive convective accelerations. For this reason, little information 
about the flow is convected far downstream) and the entrance effect is essentially 
confined to a displacement distance corresponding to one heart beat. The asym- 
metrical velocity profiles created by an arterial branch are found to be confined 
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to a distance of 10 diameters, which is again approximately equal to the dis- 
placement length of blood for one heart beat, see Ling, Atabek & Carmody 
(1969). Similarly, asymmetrical velocity profiles and secondary flows developed 
by the aortic arch and arterial branches are found to be localized and are not 
convected into the descenchg aorta. 

The first two of the above observations will permit one to decouple the motion 
of the arterial wall from the motion of the blood, while the third observation will 
allow one t o  simplify the equations governing the motion of blood. 

2.1. Equations governing the motion of blood 

For this problem blood can be taken as an incompressible Newtonian fluid. We 
shall use the cylindrical co-ordinates r,  B and z, with z along the axis of the vessel. 
Since our aim is to  use locally measured quantities to  predict the local flow 
characteristics, the choice of the origin of z is immaterial. 

The motion of blood is governed by the Navier-Stokes equations and the 
equation of continuity. We shall assume that the flow is axially symmetric and 
body forces are absent. Under these assumptions the governing equations have 
the following form: 

(1) 

(2) 

au au au 1 ap + Y  (apu -+--+--- 1 au a2u u 
at ar az par ar2 r ar az2 r2 

aw aw aw 

-+u-+w- = --- 

-+u-+w-= 
at ar az 

au u aw -+-+- = 0. 
ar r az (3) 

Here t denotes time, u and w denote the components of the fluid velocity in the r 
and z directions, respectively, p is the pressure, p is the density and Y is the 
kinematic viscosity of blood. 

2.2. Motion of the arterial wall 
As is indicated above, the longitudinal motion of the arterial wall is significantly 
arrested by the perivascular tethering. Here we shall neglect this component of 
the arterial motion and seek a simple relation connecting local values of the 
radial pressure force, mass and elastic response of the arterial wall. Let R = R(z, t )  
denote the inner radius of the artery. We assume that the variation of R with 
pressure is known (determined experimentally). Let us denote this functional 
relation by p = P(R). Although the effect of arterial taper (both the natural 
taper and the generated taper due to  the wave front) on the motion of blood is 
important because of convective acceleration, its effect on the radial motion of 
artery is negligible. Therefore the equation of motion for the arterial wall can 
be written as 

Here m denotes the effective mass of the artery per unit length in its natural state. 
Equation (4) is valid only locally (for a fixed z )  and to emphasize this point we 
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use the partial derivative with respect to time. With p known as a function of 
time and the local elastic response of an artery, starting with homogeneous 
initial conditions, one can integrate this equation numerically to determine R as 
a function of time. 

2.3. Simplijication of the equation of motion 
Equation (2) may be simplified by dropping the term a2w/az2, which is negligible 
in comparison with the radial derivatives. Because of the small radial velocity 
and acceleration, the radial variation of pressure within the artery can also be 
neglected. Therefore the longitudinal pressure gradient ap/az may be considered 
as a function of z and t only. Let us take -p-l(ap/az) = P(z,t). Hereafter, we 
shall assume that P(z, t )  is an experimentally determined, known function. Then 
(2) may be written as 

-+u-+w- = P(z,t)+v (!;+i%). - aw aw aw 
at ar ax 

As a result of the replacement of 8pli.h with a known function, (5) now contains 
only two unknown dependent variables, u and w. Equation (3) also contains 
only these dependent variables. Therefore, these two equations together are 
sufficient to determine both u and w. Of course we have to supplement them with 
proper boundary and initial conditions. In  the radial direction the boundary 
conditions are 

(6) 

(7)  

(8) 

U P ,  2, t)J7=R(Z,t) = aR/% 
w(r, 2, t)lr=RQ,t) = 0, 

[aw(r, 2, t)/ar],=, = 0. 

Boundary conditions in the z direction reflect the effect of upstream and down- 
stream flows on the local flow. Since the aim is to determine the local flow from 
the locally measured flow properties, it is necessary to find a way to eliminate the 
need for boundary conditions on z. This will be accomplished, later, by eliminating 
all explicit z dependence from the equations. 

Since the first two boundary conditions given above are prescribed at a moving 
surface, the problem is difficult to handle. However, by introducing the co- 
ordinate transformation 

7 = r/R(z , t )  

we can rewrite the boundary conditions as 
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By solving (14) for aw/az and substituting it into (13)  we can eliminate explicit z 
dependence from this equation: 

aw - = P ( z t ) +  at ---- R at u ) a w  R -+- a7 w y  R -+- a7 u)  7 +- RZ v (azw -+-- a72 7a7 l a w )  ' (15) 

On integrating (14) with respect to 7 between zero and 7 we find that 

Now all terms with explicit z dependence, aw/az and aR/az, appear in this equa- 
tion. The next task is to express them in terms of known quantities. 

We shall approximate aw/az by forming the quotient AwlAz. From the ex- 
perimental data one observes that the shape of the w velocity profile varies slowly 
with z. For a small increment Az in z we may take w(7, z + Az, t )  N kw(7, z, t ) ,  
where k is an unknown function of x and t .  Thus, 

On substituting this expression for awlax into (16) we get 

Since the pressure gradient ap/az is approximately uniform within the cross- 
section, we may msume awl& does not change its sign within the cross-section. 
Then sgn (awlax) may be taken outside the integral sign and the unknown factor 
Ik - 11 sgn (aw/az)/Az can be determined easily with the help of the boundary 
conditions (10) and (11 ) .  After performing the necessary calculations we obtain 

Since the radius R of the vessel is a function of both z and t the partial derivative 
8Rla.z is evaluated keeping t constant. Using the customary notation, let us write 
this derivative as (aR/az),. We may also consider R as a function of z andp, where 
p in turn is a function of z and t :  R = R(z, t )  = R[z, p(z ,  t ) ] .  Then we can eqress  the 
partial derivative (aR/az)t as 

Here the term (aR/az), represents the variation of R due to the natural taper of 
artery. If we denote the taper angle of artery at  a given location and a t  a fixed 
pressure by $ we have (aR/az), = -tan $. The product (aR/ap), (ap/az)t ex- 
presses the arterial taper generated by the pressure wave and is equal to 
- pF(aR/ap),. Putting everything together and dropping subscripts we get 

aR- - -  ( 
a Z  

32 *LM 5 5  
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Substituting this relation into (17) we obtain 

X. C .  Ling and H .  B. Atabek 

This expression for u satisfies the boundary condition (lo), and u goes to zero as 
y goes to zero. When w is uniformly positive or negative within the cross-section 
at a given time, the expression in square brackets vanishes. The derivative aR/ap 
can be determined from the experimental pressure-radius relation. The angle $ 
also has to be determined experimentally. A t  a given location $ may vary with 
pressure and, since this is a small angle, it is hard to  measure such changes. In 
our calculations we assumed $ to be a constant. 

3. Finite-difference equations 
As a result of simplifications introduced in the previous section, the problem 

of solving for the velocity components u and w is reduced to integrating (15) 
and (18) subject to the boundary conditions (11) and (12). We shall carry out 
this integration by a finite-difference method. Let us consider a rectangular 
mesh formed by the points of intersection between two families of parallel 
straight lines: 

y = i 8 ? ,  i = O , l , 2  ,..., n, n s y = l ,  

7 = j s r ,  j = 0,1,2 )..., 8, ssr = 1, 

where r = t/T is the normalized time with respect to the cardiac period T .  Here 
Sy and 6r represent incremental steps in y and r ,  respectively. The selection of 
their values is governed by the consideration of precision and stability of the 
solution to be attained, as well as the computer time. In computations, it  is 
necessary to choose Sy and Sr so that the equivalent radial velocity of the 
numerical operation expressed by R 8yfT Sr is greater than the radial diffusion 
velocity of the laminar boundary layer expressed as 2(v/T &)&. 

By introducing appropriate finite-difference expressions for different deriva- 
tives, we obtain the following difference equation for (18) valid at each node (i,j): 

where 
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The corresponding finite-difference equation for (15) can be expressed as 
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We have indicated at the end of $2.3  that u = 0 at 7 = 0;  therefore, uo,i = 0 
for all j. Also, at 7 = 0 equation (15) has singularity, hence it must be modified 
for the numerical operation. Because both w and u are axially symmetric func- 
tions, it can be shown that 

lim-- = - 

Therefore, for i = 0 equation (20) reduces to 

The last term of (21) is obtained through the condition of axial symmetry, 
equation (12). 

With these equations computation starts with wi,o = 0. Then the values of 
Rj and R; are calculated from the experimental data. Next u ~ , ~  is computed and 
the results of these calculations together with the experimental data for the 
pressure gradient are fed into (20) and (21) to determine w ~ , ~ .  After this, the 
computation cycle is repeated to obtain u ~ , ~  and w ~ , ~ ,  ui,2 and w ~ , ~ ,  etc. It will 
take the solution a few cardiac cycles to settle into a steady periodic flow. 

4. Experiments and numerical results 
The theory developed in the previous section contains many parameters which 

have to be well defined before the validity of the theory can be checked with 
experiments in vivo. However, it  is extremely difficult to carry out all the 
necessary measurements and obtain a consistent set of data within the time 
during which an animal can be maintained in a steady physiological state. In 
view of this, we decided to use the model of a circulatory system, which has been 
under construction in our laboratory, to test the theory. Both the flow field 
and the physiological parameters of this system can be controlled and measured 
with greater precision. 

The model system is shown in figure 1 (plate 1).  This model is designed to 
simulate the systemic circulation of a medium-sized dog. It consists of the left 
atrium, left ventricle, aorta, innominate arteries, mesentric arteries, renal 
arteries and common iliac arteries. The peripheral vascular bed is simulated 
by long small-lumen elastic tubes. Both the mitral and aortic valves are de- 
signed to have dynamic characteristics approximating those of their living 
counterparts. A glycerin-water mixture with kinematic viscosity v = 0.036cma/s 

32-2 
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1.6 

R/R, = A, 

FIGURE 2. Typical pressure-radius response curve for the descending aorta of a dog. 
?, = 100 mm Hg, R, = 0.50 cm, h, = 0.07 em. 0 ,  A, = 1.45; 0 ,  A, = 1.40; +, A, = 1.35. 

is used as the test fluid. The system, with the help of electronic controls, is 
capable of producing programmed pressure wave forms, see Ling et al. (1969) 
and Ling (1970). 

To construct the model we have studied the elastic response of arteries in 
detail. In the following we shall discuss the large-deformation characteristics of 
arteries that we have learned through these studies, and we shall give a short 
account of our efforts to design model arteries which duplicate these charac- 
teristics. 

4.1. Modelling of the arteries 

A typical elastic response curve of the descending aorta of a dog is shown in 
figure 2. In this figure the arterial pressure p normalized by the mean systemic 
pressure is plotted versus the radial extension ratio A, = R/R,. Here R, repre- 
sents the undeformedvalue of the inner radius of the artery. Arteries are normally 
under initial longitudinal strains having an extension ratio A, = 111, approxi- 
mately equal to 1.4, where 1 and 1, represent the in vivo and undeformed lengths 
of a piece of artery, respectively. At zero pressure and A, = 1-4 the value of A, 
is approximately 0.85. As pressure rises from this level towards p / p  = 0.6, the 
slope of the curve decreases rapidly. This nonlinear behaviour, which is known as 
‘ballooning effect ’ (readily observed during the inflation of toy balloons), is 
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responsible for the large dynamic capacitance of arteries. Within this pressure 
range the response of arteries is essentially controlled by highly elastic elastin 
lamellae, see Wolinsky & Glagov (1964); the relatively stiff collagen fibres, which 
are in a highly corrugated state, do not contribute to the elastic response. At 
higher pressure levels ( p / p  > 0.6) the collagen fibres begin to straighten out and 
finally bear the major part of the pressure load. This is indicated by the rapid 
steepening of the pressure-radius curve for A, > 1.4. 

At low pressure levels, the pressure-radius curves corresponding to longitudinal 
extension ratios A, = 1.35 and 1.45 lie below and above the curve for A, = 1.4, 
respectively. As pressure increases, these three curves gradually merge to a single 
curve, which indicates a lack of strong elastic coupling between the circum- 
ferential and longitudinal strains. Therefore, one must conclude that the collagen 
fibres are oriented mainly in the circumferential direction. This observation is in 
agreement with the results obtained through electron microscopy of the arterial 
walls frozen at various levels of strains, see Wolinsky & Glagov (1964). 

Under normal physiological conditions the systemic pressure pulsates approx- 
mately within the range p/ji = 0.75-1.25. This corresponds to a 22 yo change in 
the radial extension (see @re 2) or a 49 % change in the cross-sectional area. 
It is obvious that these large variations in radius and area will have a strong 
effect on the flow characteristics of arteries. 

With this basic knowledge of the arterial structure one may proceed to simulate 
the overall pressure-radius relation by means of a composite structure of silicone- 
rubber and corrugated nylon fibres. Since the elastic properties of silicone 
rubber (a highly elastic and incompressible material) are similar to those of 
elastin, one may design a silicone-rubber tube to duplicate the behaviour of an 
artery within the low-pressure range. The pressure-radius relation of such a tube 
would be governed by the following equation, which is derived from a more 
general expression given in Green & Adkins (1960): 

Here W denotes the strain energy function of the material, I and I1 represent 
the first and second strain invariants, respectively, and hoand Roare the thickness 
and inner radius of the undeformed tube, respectively. 

The values of the derivatives a W/aI and a W/aII can be determined by inflating 
a piece of tube with two different longitudinal extensions. Experiments carried 
out both on tubes and pieces of arteries (see Ling 1970) indicate that within the 
physiological range of deformations these derivatives are constant. For elastin 
values of a W/aI and 8 WlaII are 0.50 and - 0.05 kg/cm2, respectively; the 
corresponding values for G.E. RTV-108 silicone rubber (aged approximately 
one month) are 2-03 and - 0.44 kg/cm2, respectively. 

Since the constancy of the derivatives awl81 and aW/aII for rubber (within 
the range of extensions of the present problem) is an established fact (see Green & 
Adkins 1960) the above-stated experimental observations have two important 
implications: (i) elastin may be considered as a, rubber-like material, (ii) the 
lower part of the normalized elastic response curve corresponding to a given A, 
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is a universal curve. To prove the latter statement we first differentiate (22) with 
respect to R and obtain 

Then, we eliminate the factor (aW/aI+A2,aW/aII) between (22) and (23). This 
gives us 

(24) 

Equation (24) is the differential equation of the elastic response curve. It does 
not contain any parameter related to the material properties, thus its integral 
is a universal curve. That is, for a fixed A, and for a given pair (p /p ,  A,) there is 
only one elastic response curve for all rubber-like materials. The plot of this curve 
for A, = 1.4 is shown as the dashed line on figure 2. For p/P < 0.5 it coincides 
with the corresponding experimental curve. The rapidly decreasing slope of the 
upper part of this universal curve indicates the fact that without the interference 
of the collagen fibres arteries would become unstable. 

To simulate a given artery in the lower pressure range with a silicone-rubber 
tube one must know the values of R, and h,. The value of R, for the tube should 
be equal to the undeformed inner radius of the artery. However, R, cannot be 
measured directly. One either may determine its value by extrapolating the 
experimental pressure-radius curve or calculate it with the help of the following 
equation, which is obtained by rearranging (24): 

The value of R, can be easily obtained by specifying the values of R and dR/dp 
at a given pressure p together with the value of A,. Knowing R,, one can find h,, 
from (22). Since rubber is stiffer than elastin, the undeformed thickness of  the 
tube will be smaller than the corresponding thickness of the artery. 

To fabricate the rubber tube, we used a teflon-coated mandrel whose dimen- 
sions were the same as the internal dimensions of the undeformed artery. The 
silicone rubber is applied and cured over the mandrel in successive layers 
approximately 0.01 cm thick until the required distribution for h, is obtained. 
To prevent the unsymmetrical ballooning effect, the circumferential variation 
of the thickness should be kept within k 0-003 cm. 

To simulate the elastic characteristics of arteries in the higher pressure range 
we use the fibres of regular nylon stockings (the type which runs). A piece of this 
knitted material is mounted over a rigid frame. Then, for every six rows o i  the 
knitting we remove the interconnecting loops from five rows leaving one row 
intact. The result is a system of free corrugated fibres interconnected with each 
other a t  every sixth corrugation. This material is impregnated with silicone 
rubber and wrapped (in a fully stretched state) around the tube, which has been 
previously slipped over a new mandrel having dimensions corresponding to 
A, = 1.5. The fibre system is then bonded to the tube along the knitted sows 
leaving the corrugated parts free. Figure 3 shows the composite tube in its 
strained and unstrained states. 
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Bonded to tube along 
knitted line Silicone-rubber tube 

-- 

Corrugated nylon fibres 
impregnated with silicone 
rubber, unbonded to tube 

FIGURE 3. Model artery (a) a fully strained and ( b )  an unstrained state. 

4.2. Measurements 

We have chosen the middle descending thoracic aorta of the model as the test 
site. This portion of the aorta is straight and is free from large arterial branches. 
At this location we have measured the pressure, pressure gradient, pressure- 
radius relation, wall taper, axial velocity profiles and wall shear. The first four 
of these measurements are used as the input information for the computations. 

To provide the necessary precision for the measurement of the pressure gradient 
a new technique was developed. In this technique, two matched Statham P23Db 
pressure transducers are used together with a duplex three-way valve for trans- 
posing the inlet of each transducer to either one of the three pressure taps on 
the aorta. One of the taps on the aorta is located a t  the point where the local 
flow characteristics are to be determined. The other two taps are located 2-5 cm 
proximal and 2-5 cm distal to this point, respectively. For measuring the pressure 
as well as for checking the static and dynamic matching of the two pressure 
gauges, the inlets of the transducers are connected through the duplex three-way 
valve to a common catheter. This catheter is first connected to a known static 
pressure source, with which we calibrate and adjust the two gauges until their 
outputs track one another for all pressures ranging from 0 to 140mmHg. The 
common catheter is then transferred to the central tap of the pulsating aorta. 
The two dynamic pressure signals from the transducers are subtracted from 
one another through a precision operational amplifier. For a well-balanced 
system this difference should not exceed +. 0-5 mm Hg. If the difference exceeds 
these limits, the cause can usually be traced either to micro gas bubbles trapped 
in the system or to catheters which are not stiff enough. The bubbles can be 
eliminated by soaking the system overnight in de-aerated saline, see Barnett, 
Greenfield & Fox (1961). When a satisfactory dynamic balance is achieved, the 
pressure signal from one of the gauges is recorded on a calibrated frequency- 
modulated tape. 

To obtain the pressure gradient signal, the inlets of the first and second 
transducers are connected through the duplex three-way valve to the proximal 
and the distal pressure tap on the aorta, respectively. By subtracting the signal 
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FIGURE 4. Pressure, pressure gradient and inner radius as functions of the cardiac cycle. 
p = 100 mm Hg, ( - ap/az) = 0-023 mm Hg/cm, R, = 0-47 em. 

of the first transducer from that of the second transducer through the operational 
amplifier, we obtain the ‘forward’ pressure difference. Similarly, by reversing 
the pressure connexions through the duplex three-way valve we obtain the 
‘backward ’ pressure difference. These signals are recorded successively on the 
tape for a minimum of 30 cardiac cycles. Since both the magnitude and sign 
of the static instrument errors in these measured signals do not change under the 
above described transposition of the pressure connexions (the signs of the real 
signals will change), the static measurement errors are eliminated by subtracting 
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the ‘backward’ from the ‘forward’ pressure difference signal. In  order to preserve 
the required precision this operation is performed by a digital computer. The 
resulting signal, which is twice the true pressure difference, is divided by twice 
the distance between the two outer pressure taps and averaged over 15 cardiac 
cycles to obtain the pressure gradient wave. With this technique, one can 
determine the zero datum of the pressure gradient wave to an accuracy of 
- +O.OOlmrnHg/cm. The results of both the pressure and pressure gradient 
measurements are shown in figure 4. 

The pressure-radius relation at the test site of the present model is shown in 
figure 5. This curve is obtained by photographing simultaneously the inflation 
of the vessel and the pressure signal using an 8 mm cine camera equipped with 
a high-power telephoto lens. For a given pressure, the outer radius of the vessel 
together with the local taper is read from the film with the help of a calibrated 
microscope. The corresponding inner radius is computed using the property of 
incompressibility of the vessel wall. From figure 5 we see that the model artery 
has all the essential elastic characteristics of its living counterpart shown in 
figure 2. 

The axial velocity profiles are measured by a hot-film velocity probe. Both 
the description of this instrument and the method of measurement have been 
reported previously (see Ling et al. 1968). For the present measurements, a lucite 
collar padded with a 0-3cm thick layer of soft foam rubber is used to control 
the radial position of the probe, see figure 6. The large surface area of the foam 
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Mict 

oft foam rubbe 

------ 

Lucite collar 

FIGURE 6. Traversing system for the velocity-sensing probe. 

rubber helps to maintain concentricity of the collar with respect to the aorta 
while allowing the vessel to expand freely. The results of the measurements, 
normalized by the peak centre-line velocity w,, are plotted as dotted lines for 
various values of the normalized cardiac time T = t /T,  see figure 7. Here, T 
represents the cardiac period. The normalized centre-line velocity wave is 
shown in figure 7 (b ) .  

The velocity gradient wave at the wall is measured by a hot-film shear probe 
(see Ling et al. 1968) and is shown as the dotted line in figure 8(a) .  

4.3. Numerical integration and results 

The normalized cardiac cycle is divided into 200 equal steps, i.e. 67 = 0.005. 
The measured pressure and pressure gradient waves, shown in figure 4, are both 
read into the computer as 200 data points. Similarly, the normalized inner radius 
is divided into 20 equal spaces, i.e. 87 = 0.05. The elastic response curve, shown 
in figure 5, is expressed as a seventh-order polynominal in p and is stored in the 
computer as a subroutine program. Since the effect of the mass of the vessel 
wall is found to be negligible in the present problem, the motion of the wall is 
assumed to follow the pressure wave. Therefore, after the inertial term in (4) 
has been dropped, the value of the inner radius R(T) is determined directly through 
the stored p ( ~ )  and pressure-radius information. 

Both the calculated radial wall velocity wave and the radial velocity profiles 
are shown in figure 9. It is interesting to note that during systole for 0.1 < T < 0.3 
the u profiles tend to fold towards the negative direction. Near the wall both u 
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7 = t/T 

FIGURE 7. (a) Axial velocity profiles and (b)  centre-line velocity wave. (a) -, theory; 
--, experiment. ( b )  -, nonlinear theory: ---, linear theory; .-., experiment. w, = 77 cm/s, 
T = 0.8 S, T = 0. 

and au/ar are positive, and for q < 0.6 the reverse is true. This behaviour is 
related to the arterial taper; without the taper the profiles would have the 
opposite tendency. The resultant effect of this is to accelerate flow axially near 
the wall and decelerate it within the central core; see the third term on the right- 
hand side of (15). Even though the magnitude of u is small in comparison with 
the peak centre-line velocity w,, it  is directly responsible for the local storage 
of blood and is manifest in the convective acceleration. 

The calculated axial velocity profiles and the centre-line velocity wave are 
shown in figure 7. The agreement between the computed and the measured values 
is good. Near the wall, the predicted values of the velocity are smaller than the 
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FIGURE 8. (a) Wall shear and ( b )  discharge waves as functions of the cardiac cycle. 
(a) -, mean pressure gradient due to wall shear = 0.015 mm Hg/cm, from theory; -., 
experiment. ( b )  -, nonlinear theory ; ---, linear theory ; -.*,experiment. Q = 18.4ml/stroke. 

measured ones. The corresponding theoretical and experimental discharge waves 
are shown in figure 8 ( b )  and are obtained by integrating the calculated and 
measured velocity profiles. The agreement between these two curves is very good. 

The computed velocity gradient at the wall is shown in figure 8(a) .  During 
systole the measured values of the wall shear are higher than the computed ones. 

5. Comparison with linear theory 
In  a previous publication, Ling et al. (1969) reported velocity profiles and wall 

shears measured in an elastic tube and compared them with those predicted by 
the linear theory. The calculations were based on the theory given by Atabek 
(1968), using the measured values of the centre-line velocity as the input data. 
The predicted velocity profiles are less blunt during systole and have large 
negative parts near the wall during diastole. Consequently the wave form of the 
predicted wall shear is significantly different from the measured one. 

One may also use the pressure gradient data as an input in the linear theory 



Pulsatile jlow in arteries 509 

A - m 

El 

% 

v 

?s - 

FIGURE 9. (a) Radial velocity profiles and ( b )  velocity of wall as 
function of the cardiac cycle. 

for calculating the flow. We have used the pressure gradient given in figure 4 
to calculate the axial velocity profiles, wall shear and discharge rate in the model 
artery. The calculated velocity profiles differ significantly from the measured 
ones. During systole their forms are essentially parabolic. The magnitude of the 
maximum centre-line velocity is approximately 50 % larger than the correspond- 
ing measured value. Because of their large magnitudes, we have decided not to 
show these profiles in figure 7. However, the centre-line velocity wave is shown as 
the dashed line in figure 7 ( b ) ;  except for the large mean flow component, this 
curve is very similar to the measured wave. The wave of wall shear predicted 
by the linear theory is very close to the one predicted by the nonlinear theory 
and is depicted as the dashed curve in figure 8 (a).  The calculated discharge wave 
is shown as the dashed curve in figure 8 ( b ) .  Although it agrees fairly well with 
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the measured discharge wave during systole, the predicted values are too high 
during diastole. 

Since in the linear theory a small change in the mean pressure gradient would 
produce a large difference in the mean flow, a slight adjustment in the measured 
pressure gradient could easily make the predicted discharge wave agree with 
the measured one. This observation, while emphasizing the need for a precise 
pressure gradient measurement, explains the apparent agreement of the measured 
and predicted discharge waves given by previous investigators, see MacDoiiald 
(1960). The reason for the failure of the linear theory in predicting acceptable 
velocity profiles lies in the process of linearization. As one can see from ( 2 ) )  the 
longitudinal pressure gradient is balanced by the inertia forces due to both local 
and convective accelerations as well as by the viscous forces generated by velocity 
gradients. I n  the linearization process the convective acceleration terms are 
dropped. As a consequence, the linearized equations are forced to produce the 
required balance by artificially increasing viscous forces with higher flow rates. 
For the case under consideration, the linear theory predicts a large discharge 
rate of 32 ml./stroke, while the corresponding figures obtained from the non- 
linear theory and the measurements are 17.9 and 18.4 ml./stroke, respectively. 

6. Concluding remarks 
From the experimental data on the aortas of eight dogs, which were subjected 

to strain rates within the physiological range, we were not able to detect in 
these arteries any measurable viscoelastic behaviour. Therefore, in the present 
work there is no explicit reference to the viscoelaatic behaviour of the arteries. 
The arteries which show serious viscoelastic behaviour will have hysteresis Ioops 
on their elastic response curves. Such response characteristics can be readily 
stored in the computer and used with the present theory. 

In  view of frequent arterial branching, input information introduced at  the 
root of aorta is gradually lost as the flow progresses along the vessel. A theory 
taking into account all branching effects would be extremely complex. Therefore, 
a simpler theory (like the one presented above) which uses local information to 
predict the local flow is the only alternative available at  this time. We hope that 
this technique may prove to be useful not only for conducting controlled study 
of the various biomedical problems associated with the haemodynamic events, 
but also for various clinical applications. Measurement of the pressure gradients 
through a double-lumen catheter, instead of direct arterial taps, should enhance 
the applicability of this technique for clinical diagnostic work. 
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FIGURE 1. Model circulatory system. The duplex three-way valve and pressure gauges arc 
located in front and at the top of the model heart, respectivcly. 
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